Phylogenomic structures of modern Citrus varieties

Last update: 16 March 2018

Cultivated Citrus have complex genomes arising from a reticulate evolution and, in some cases, from polyploidization events. This background greatly determines the structure and functioning of these genomes and determines genetic improvement pathways. Some major breakthroughs have been made in recent years in terms of establishing molecular resources and enhancing knowledge about Citrus genomes.

In connection with the international Citrus genomics consortium, the SEAPAG team coordinated the construction of the reference genetic map (Ollitrault et al., 2012a), which involved 8 teams from 5 countries and was closely involved in the ANR ‘citruseq’ project coordinated by Génoscope, which was decisive for establishing the reference sequence of the genome of a doubled haploid clementine (Wu et al., 2014).  In partnership with IVIA, some large sets of nuclear markers, SSRs, InDels and SNPs have been developed (Terol et al.,2008; Froelicher et al., 2008, Luro et al., 2008; Garcia et al., 202, 2013a; Ollitrault et al., 2010, 2012b, c; Cuenca et al., 2013; Curk et al., 2015a) and the centromeres of each chromosome were positioned on the reference map by ”Half Tetrad Analysis” (Cuenca et al., 2011; Aleza et al., 2015). Some cytoplasmic markers have also been developed (Froelicher et al., 2011; Oueslati et al., 2016). Work on deciphering interspecific mosaic structures of the genomes of cultivated forms is under way. These studies have revealed the introgression of C. maxima in the genome of modern mandarin varieties (Wu .et al. 2014; Curk et al., 2014, 2015a; Garcia-Lor et al., 2015), helped to specify the phylogenomics of the main horticultural species (Garcia-Lor et al., 2012, 2013b ; Wu et al., 2014, 2018 ; Curk et al., 2015) and, in particular, analyse the origin and phylogenomic structure of lime trees (C. aurantifolia) and lemon trees (C. limon) (Curk, 2014 ; Curk et al., 2016). The team recently demonstrated the merits of genotyping by sequencing (GBS) to establish phylogenetic karyotypes on large populations (Oueslati et al., 2017).

References cited

  • Aleza P., Cuenca J., Hernandez M., Juarez J., Navarro L., Ollitrault P. (2015) Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC Plant Biology, 15 (80) : 13 p.
  • Cuenca J., Froelicher Y., Aleza P., Juarez J., Navarro L., Ollitrault P. (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv "Fortune". Heredity, 107 (5) : p. 462-470.
  • Cuenca J., Aleza P., Navarro L., Ollitrault P. (2013) Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: Application to citrus triploid progeny. Annals of Botany, 111 (4) : p. 731-742.
  • Curk F. (2014) Organisation du complexe d'espèce et décryptage des structures des génomes en mosaïque interspécifiques chez les agrumes cultivés. PHD thesis. Ecole Doctoral SIBAGHE, Université de Montpellier 2. 260 p
  • Curk F., Ancillo G., Garcia-Lor A., Luro F., Perrier X., Jacquemoud-Collet J.P., Navarro L., Ollitrault P. (2014) Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: Analysis of chromosome 2. BMC Genetics, 15 (152) : 19 p.
  • Curk Franck, Gema Ancillo, Frédérique Ollitrault, Xavier Perrier, Jean-Pierre Jacquemoud-Collet, Andres Garcia-Lor, Luis Navarro, Patrick Ollitrault. (2015) Nuclear Species-Diagnostic SNP Markers Mined from 454 Amplicon Sequencing Reveal Admixture Genomic Structure of Modern Citrus Varieties.  Plos ONE, 10(5): e0125628
  • Curk F., Ollitrault F., Garcia-Lor A., Luro F, Navarro L., Ollitrault P. (2016). Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Annals of Botany. 117(4):565-83.
  • Froelicher Y., Dambier D., Bassene J.B., Costantino G., Lotfy S., Didout C., Beaumont V., Brottier P., Risterucci A.M., Luro F., Ollitrault P. (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Molecular Ecology Resources, 8: 119-122.
  • Froelicher Y., Mouhaya W., Bassene J.B., Costantino G., Kamiri M., Luro F., Morillon R., Ollitrault P. (2011) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genetics and Genomes, 7 (1) : p. 49-61.
  • Garcia-Lor A., Luro F., Navarro L., Ollitrault P. (2012) Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity : A perspective for genetic association studies. Molecular Genetics and Genomics, 287 (1) : p. 77-94.
  • Garcia-Lor A, Ancillo G, Navarro L and Ollitrault P. (2013a) Citrus (Rutaceae) SNP Markers Based on Competitive Allele-Specific PCR; Transferability Across the Aurantioideae SubfamilyApplications in Plant Sciences 1(4):1200406. 2013. doi: http://dx.doi.org/10.3732/apps.1200406
  • Garcia-Lor A., Curk F., Snoussi Trifa H., Morillon R., Ancillo G., Luro F., Navarro L., Ollitrault P. (2013b) A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the "true citrus fruit trees" group (Citrinae, Rutaceae) and the origin of cultivated species. Annals of Botany, 111 (1) : p. 1-19.
  • Garcia-Lor Andrés, Luro François, Ollitrault Patrick, Navarro Luis. (2015) Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genetics and Genomes, 11, 15 p. 
  • Luro F., Costantino G., Terol J.F., Argout X., Allario T., Wincker P., Talon M., Ollitrault P., Morillon R. (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics, 9 (287) : p. 1-13.
  • Ollitrault F., Terol J.F., Pina J.A., Navarro L., Talon M., Ollitrault P. (2010) Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. American Journal of Botany, 97 (11) : e124-e129e.
  • Ollitrault P., Terol J.F., Garcia-Lor A., Bérard A., Chauveau A., Froelicher Y., Belzile C., Morillon R., Navarro L., Brunel D., Talon M. (2012a). SNP mining in C. Clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics, 13 (13) : 19 p.
  • Ollitrault F., Terol J.F., Martin A.A., Pina J.A., Navarro L., Talon M., Ollitrault P. (2012b) Development of indel markers from Citrus clementina (Rutaceae) BAC-end sequences and interspecific transferability in Citrus. American Journal of Botany, 99 (7) : e268-e273.
  • Ollitrault P., Terol J.F., Chen C., Federici C.T., Lotfy S., Hippolyte I., Ollitrault F., Bérard A., Chauveau A., Cuenca J., Costantino G., Kacar A.Y., Mu L., Garcia-Lor A., Froelicher Y., Aleza P., Boland A., Billot C., Navarro L., Luro F., Roose M.L., Gmitter F.G.J., Talon M., Brunel D. (2012c). A reference genetic map of C. clementina hort.; citrus evolution inferences from comparative mapping. BMC Genomics, 13 (593): 20 p.
  • Oueslati A, Ollitrault F., Baraket G., Salhi-Hannachi A., Navarro L., Ollitrault P. (2016) Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR. BMC Genetics, 17 (118): 14 p.
  • Oueslati A., Salhi-Hannachi A., Luro F., Vignes H., Mournet P. and Ollitrault P. (2017) Genotyping By Sequencing reveals the interspecific C. maxima / C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS ONE 12(10): e0185618.
  • Terol J.F., Naranjo M.A., Ollitrault P., Talon M. (2008) Development of genomic resources for Citrus clementina : Characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics, 9 (423) : 12 p.
  • Wu G.A., Prochnik S., Jenkins J., Salse J., Hellsten U., Murat F., Perrier X., Ruiz M., Scalabrin S., Terol J.F., Takita M.A., Labadie K., Poulain J., Couloux A., Jabbari K., Cattonaro F., Del Fabbro C., Pinosio S., Zuccolo A., Chapman J., Grimwood J., Tadeo F., Estornell L.H., Muñoz-Sanz J.V., Ibáñez V., Herrero-Ortega A., Aleza P., Pérez-Pérez J., Ramón D., Brunel D., Luro F., Chen C., Farmerie W.G., Desany B., Kodira C., Mohiuddin M., Harkins T., Fredrikson K., Burns P., Lomsadze A., Borodovsky M., Reforgiato G., Freitas-Astúa J., Quetier F., Navarro L., Roose M.L., Wincker P., Schmutz J., Morgante M., Machado M.A., Talon M., Ollitrault P., Gmitter F.G.J., Rokhsar D.S. (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 32 : p. 656-662.
  • Wu G.A., Terol J.F., Ibáñez V., López-García A., Pérez-Román E., Borredá C., Domingo C., Tadeo F., Carbonell-Caballero J., Alonso R., Curk F., Du D., Ollitrault P., Roose M.L., Dopazo J., Gmitter F.G., Rokhsar D.S., Talon M.. 2018. Genomics of the origin and evolution of Citrus. Nature : 20 p. doi.org/10.1038/nature25447.

Last update: 16 March 2018